

GUILD Conference 2020 February 16-19

Wailea Beach Marriott • Maui, Hawaii

NASH: State of the Art 2020

Kris V. Kowdley MD, AGAF, FACG, FACP, FAASLD Clinical Professor of Medicine Washington State University Director, Liver Institute Northwest Seattle, WA

Disclosures

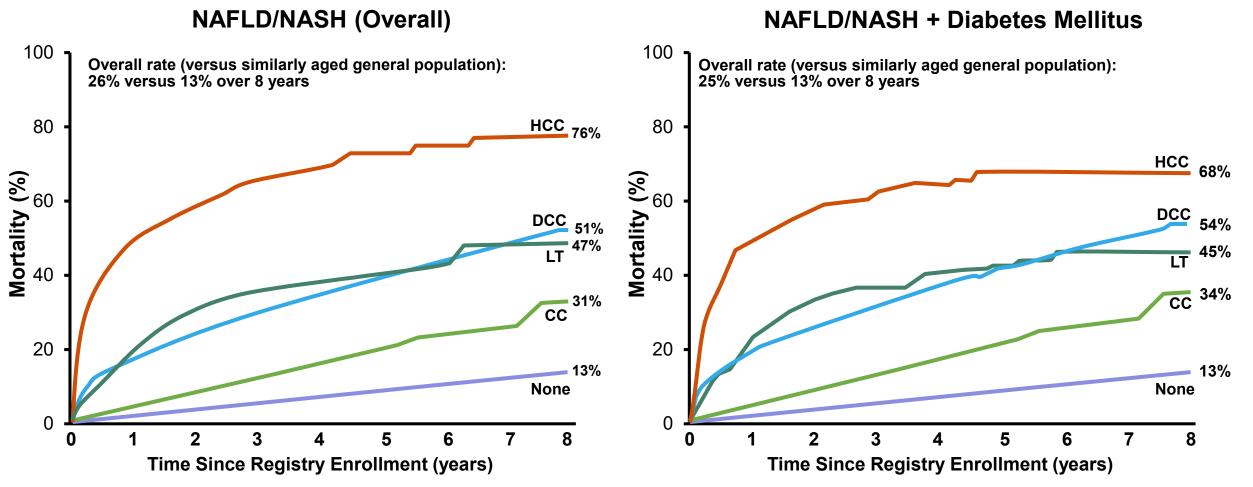
- Research:
 - Enanta, GSK, Gilead, HighTide, Genfit, Allergan, Novartis, Intercept, La Jolla, Conatus, Galectin, CymaBay, NGM Bio, Galectin,
- Consultant;
 - Genfit, HighTide, Gilead, Intercept, Enanta, Protagonist, La Jolla, Merck, Abbvie, Prometic, Corcept, Assembly BioSciences, Boeringer Ingelheim, IQVIA, Perspectum, WebMD, Callidtas
- Honoraria:
 - Gilead, Abbvie, Intercept,
- Royalties:
 - UpToDate

Real-World Analysis of Mortality Risk (2007-2015): NAFLD/NASH Patients

- Retrospective, observational, cohort study of Medicare data (n=10,826,260)
 - Adults with NAFLD/NASH (ICD-9-CM claims/diagnosis codes): 2.4%
 - Excluded: other causes of liver disease
- Primary outcomes
 - Baseline demographics and comorbidities
 - All-cause mortality (or time to event)
- NAFLD/NASH patients with (versus without) advanced liver disease (P<0.05)
 - Significantly higher rates of comorbidities, including CVD, diabetes mellitus, and renal impairment

Baseline Characteristics of NAFLD/NASH Patients by Presence of Advanced Liver Disease

	None (n=185,407)	CC (n=3592)	DCC (n=71,912)	HCC (n=581)	LT (n=575)
Female (%)	60	63	60	54	50
Mean age (years)	67	67	71	73	67
White (%)	84	87	86	82	86
Comorbidities (%) Cardiovascular disease Diabetes mellitus Hyperlipidemia Hypertension Renal impairment Smoking Diabetes/hypertension/ hyperlipidemia	65 54 84 21 25 46	74 70 87 89 29 31 62	88 64 88 93 47 40 58	84 66 87 91 45 37 59	83 71 86 91 50 45 62


CC: compensated cirrhosis.

DCC: decompensated cirrhosis.

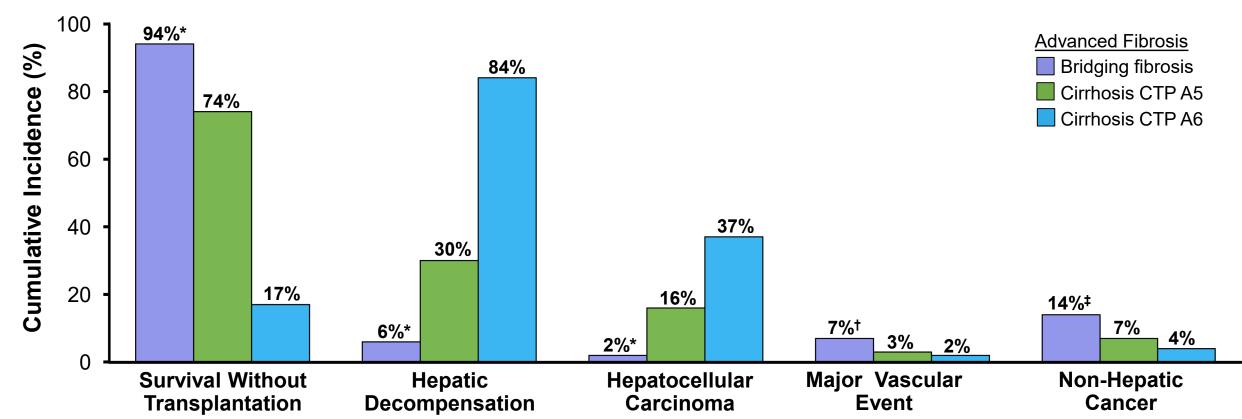
HCC: hepatocellular carcinoma.

LT: liver transplant.

All-Cause Mortality in NAFLD/NASH by Presence of Advanced Liver Disease

CC: compensated cirrhosis; DCC: decompensated cirrhosis; HCC: hepatocellular carcinoma; LT: liver transplant.

Loomba R, et al. *Hepatology.* 2018;68(suppl S1):1294A. Abstract 2286. Loomba R, et al. *Diabetes.* 2019;68(suppl 1). Abstract 1450-P.


Impact of Fibrosis Severity on Mortality and Liver-Related Outcomes in NAFLD/NASH

- International, prospective cohort registry study (1995-2013; n=458)
 - Biopsy-proven NAFLD/NASH with advanced fibrosis
 - Biopsy length (18.9 mm), portal tracts (9.7)
 - No bariatric surgery, significant body weight reduction via lifestyle changes, decompensated cirrhosis, HCC
- Comorbidities
 - Type 2 diabetes (67%), hypertension (61%), vascular disease (9%)
 - Vitamin E (1%), statins (24%)
- Clinical outcomes during follow-up (mean 5.5 years)
 - Deaths (n=37), liver transplantation (n=37), decompensation (n=90), HCC (n=41), major vascular events (n=14)

Baseline Characteristics

	Bridging Fibrosis (n=159)	Cirrhosis CTP A5 (n=222)	Cirrhosis CTP A6 (n=77)
Age (years)	54	57	57
Male (%)	50	46	52
White/Hispanic/Asian (%)	28/48/24	22/55/21	23/74/3
BMI (kg/m²)	35	32	32
MELD score	7	8	11
NAS score ≥5 (%)	49	48	21
Steatosis <33% (%)	26	39	69
Lobular inflammation (%) 0 or <2 foci/200x field	52	52	77
Ballooning (%) 0 or few cells	75	63	83

Impact of Fibrosis Severity on Mortality and Liver-Related Outcomes in NAFLD/NASH

10-Cumulative Incidence Rates

*P<0.01 for bridging fibrosis versus cirrhosis CTP-A5 and A-6. †P<0.01 for bridging fibrosis versus cirrhosis combined. ‡P=0.1 for bridging fibrosis versus cirrhosis combined.

Vilar-Gomez E, et al. Gastroenterology. 2018;155:443-457.

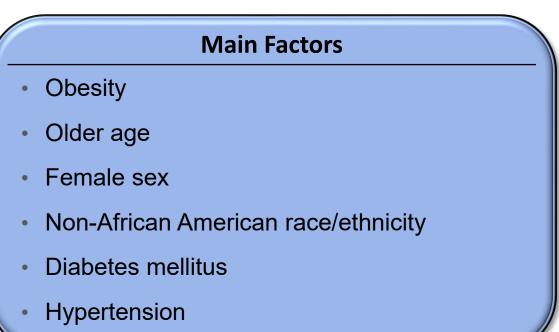
Risk Factors Associated With NAFLD

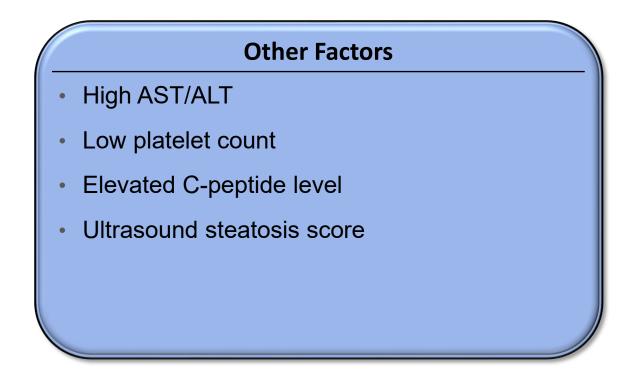
Common Comorbidities With Established Association

- Obesity
- Type 2 diabetes
- Dyslipidemia
- Metabolic syndrome*
- Polycystic ovary syndrome

Other Conditions Associated With NAFLD

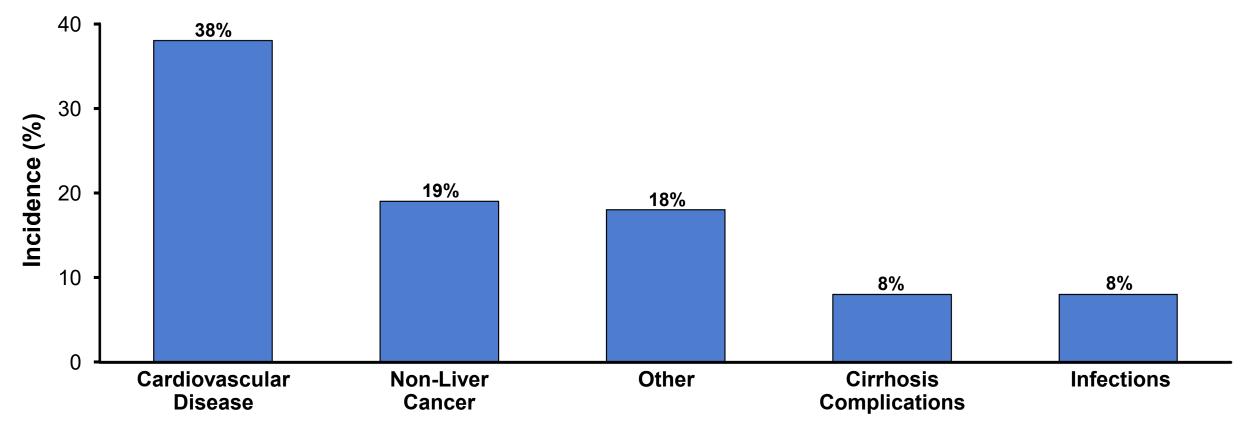
- Hypothyroidism
- Obstructive sleep apnea
- Hypopituitarism
- Hypogonadism
- Pancreatoduodenal resection
- Psoriasis


*ATP III definition (requires the presence of \geq 3 of the following features):

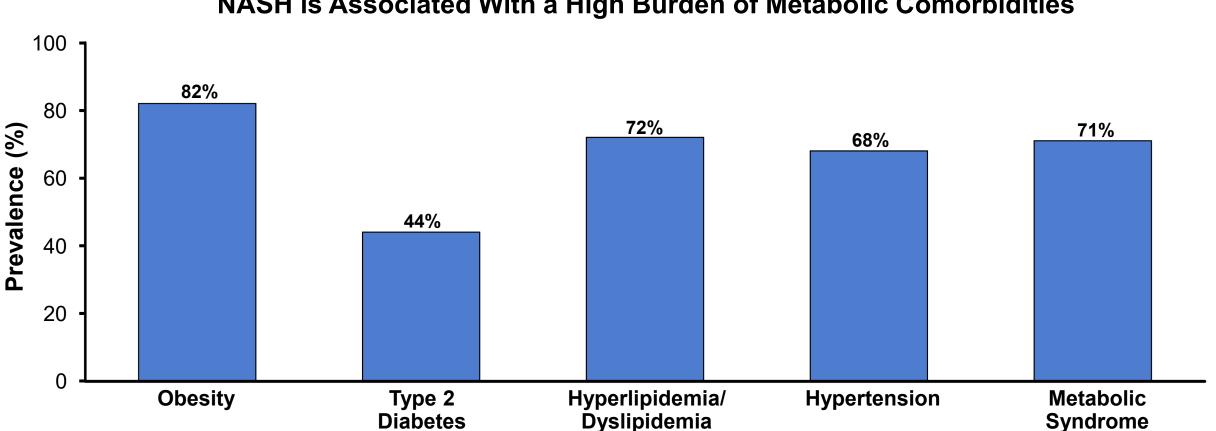

(1) waist circumference >102 cm in men or >88 cm in women; (2) triglyceride level ≥150 mg/dL; (3) HDL cholesterol level <40 mg/dL in men and <50 mg/dL in women;

(4) SBP ≥130 mm Hg or DBP ≥85 mm Hg; and (5) fasting plasma glucose level ≥110 mg/dL.

Chalasani N, et al. Hepatology. 2018;67:328-357.


Risk Factors for NASH Among NAFL Patients

PRELHIN Study: Cardiovascular Disease Is the Most Common Cause of Death/Liver Transplantation in NAFLD/NASH


Main Causes of Death/Liver Transplantation in NAFLD/NASH

PRELHIN: Prognostic Relevance of Liver Histology In NAFLD (retrospective, longitudinal NAFLD/NASH cohort (n=619; 1975-2005) in the US, Europe, and Thailand. Overall mortality/liver transplantation (193/619).

Angulo P, et al. Gastroenterology. 2015;149:389-397.

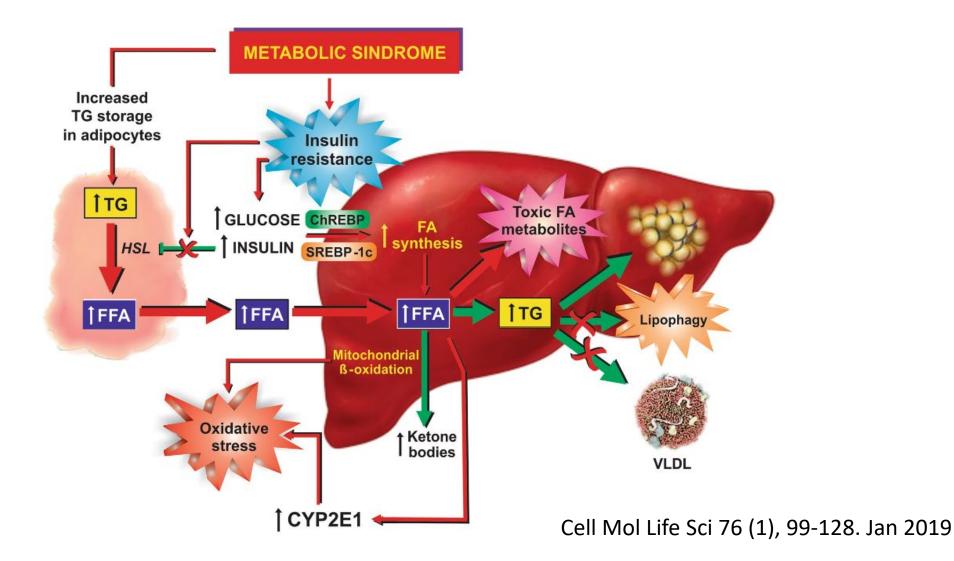
Comorbidities Associated With NASH: Global Prevalence Among NAFLD Patients

NASH is Associated With a High Burden of Metabolic Comorbidities

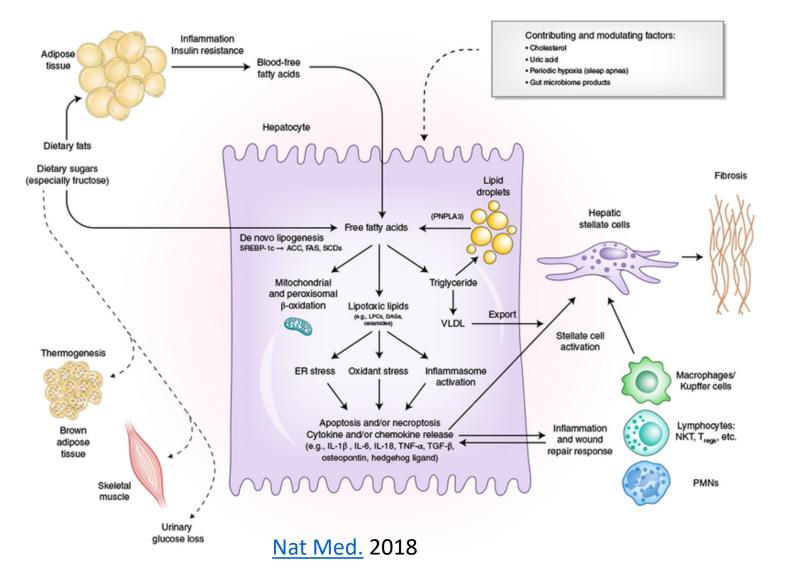
Meta-analysis: data from studies that diagnosed NAFLD by imaging (US, CT, MRI/SPECT) and NASH by histology in NAFLD patients. Number of studies reporting for NASH: obesity (n=4); type 2 diabetes (n=9); hyperlipidemia/dyslipidemia (n=4); hypertension (n=4); metabolic syndrome (n=2).

Younossi ZM, et al. Hepatology. 2016;64:73-84.

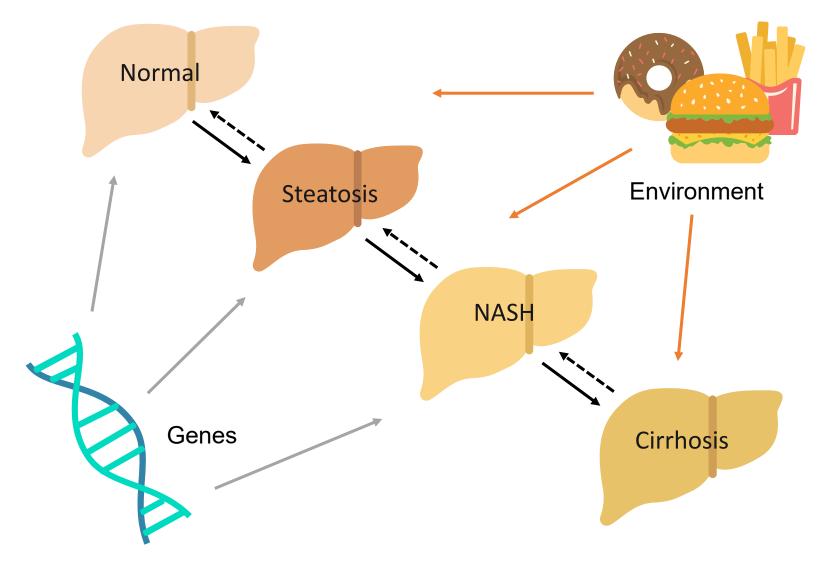
Pathophysiology


Pathogenesis of NAFLD

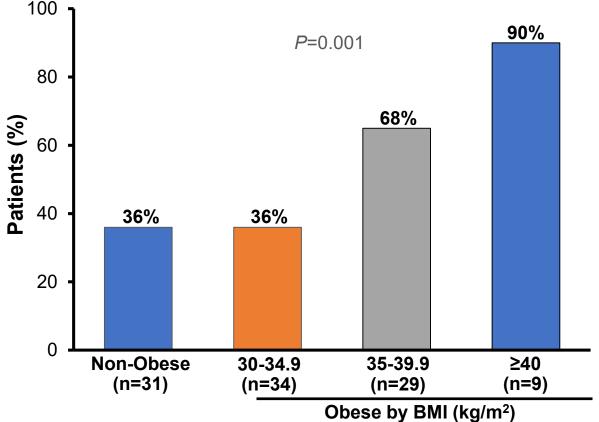
- NAFLD as a complex disease trait with genetic and environmental factors
- Obesity and insulin resistance are key pathogenic drivers
- Factors leading to hepatocellular injury
 - Oxidative stress, lipotoxicity, mitochondrial dysfunction, inflammatory activation and production of cytokines and adipokines, gut dysbiosis, ER stress
 - Stellate cell activation drives fibrosis
 - Dynamic interplay between pro and anti-steatotic mechanisms


Genetic factors are known to be important

Alcohol is a modifier

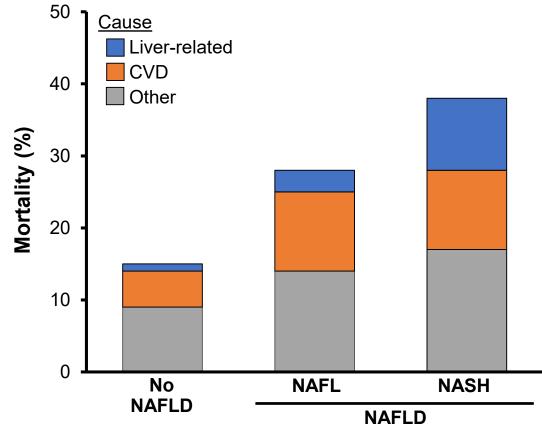

Metabolic Basis of NASH Pathogenesis

Pathophysiology of NASH


NAFLD as a Complex Disease Trait: Genetic and Environmental Modifiers

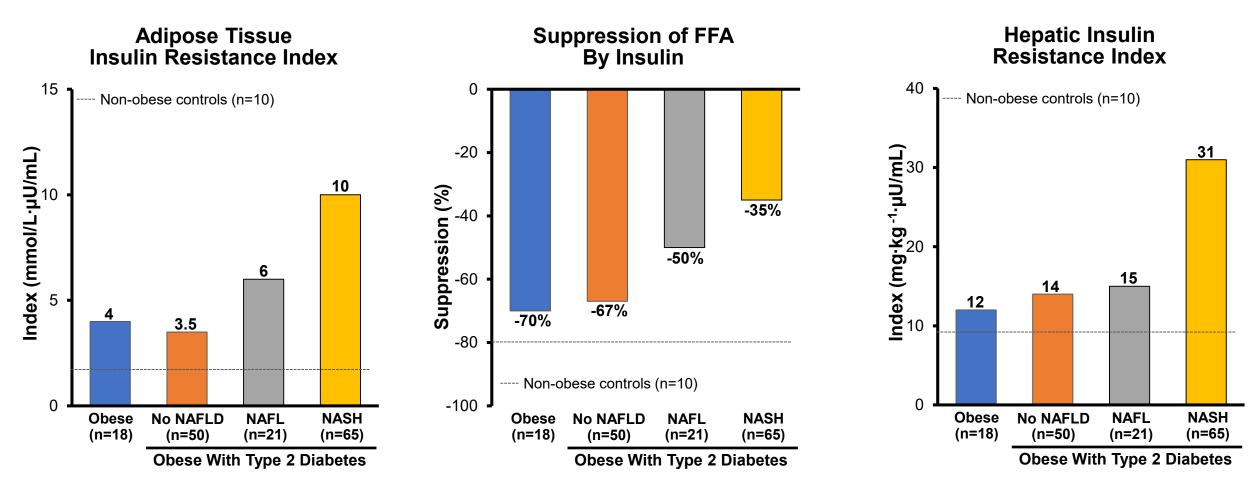
High Prevalence of NAFLD in Type 2 Diabetics With Normal AST/ALT Levels

- Cohort of type 2 diabetics with normal AST/ALT levels (n=103)
 - No prior diagnosis of NAFLD, other causes of liver disease excluded
 - Male (80%), obese (70%)
 - Liver triglyceride content by ¹H-MRS
- Overall prevalence of NAFLD: 50%
 - Prevalence increased with increasing BMI (P<0.001)
 - NASH prevalence: 56%
- Confirmation of results from larger studies is needed
 - Potential implications for need of early screening for liver disease in type 2 diabetics


Prevalence of NAFLD in Type 2 Diabetics With Normal AST/ALT

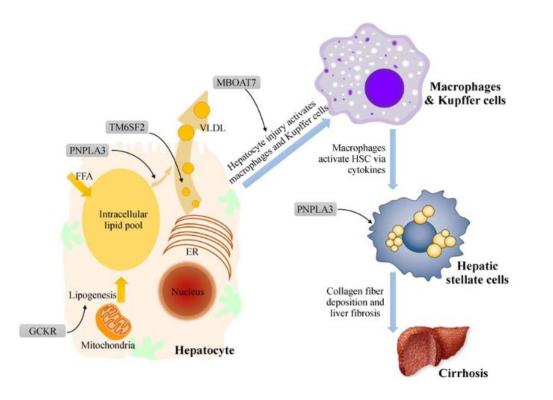
NAFLD/NASH: Why It's Important for Patients With Type 2 Diabetes

- NAFLD/NASH prevalence: ≥2-fold higher versus nondiabetics
- Faster progression to NASH and advanced fibrosis
 - NASH is associated with increased overall and liver-related mortality (type 2 diabetes increases the risk of both)
- Established link between type 2 diabetes, cirrhosis, and HCC
 - Type 2 diabetics: 2- to 4-fold higher prevalence rates of cirrhosis and HCC
- Presence of NAFLD in type 2 diabetics
 - Significantly increases the risk of cardiovascular disease
 - Promotes dyslipidemia, hyperinsulinemia
 - Subclinical inflammation


Chalasani N, et al. *Hepatology*. 2018;67:328-357. Bril F, et al. *Endocrinol Metab Clin N Am*. 2016;45:765-781. Cusi K. *Diabetologia*. 2016;59:1112-1120.

All-Cause Mortality*

*Weighted mean follow-up: 13-14.5 years.


Metabolic Impact of NASH in Obese Type 2 Diabetics

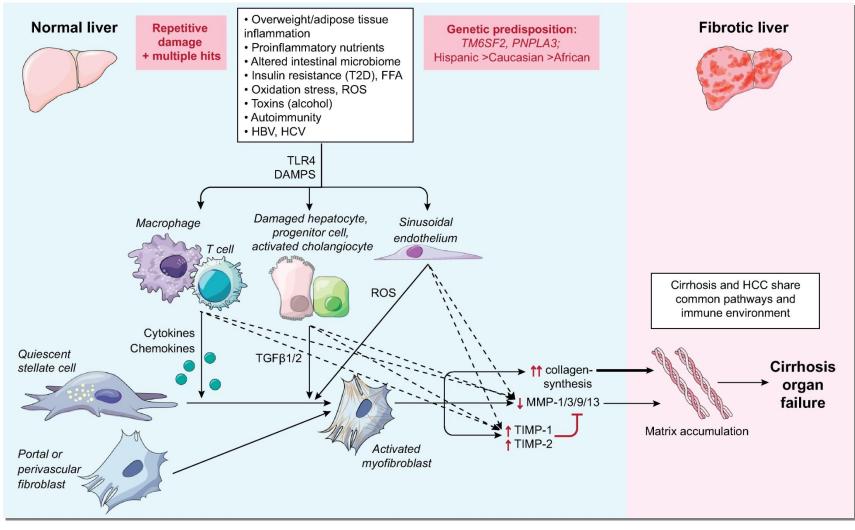
Cohort study (n=154). No significant differences in important baseline clinical characteristics such as sex, BMI, and total body fat among the groups. Metabolic parameters worsened progressively with the presence of type 2 diabetes and the development of hepatic steatosis, with worse hyperinsulinemia, insulin resistance, and dyslipidemia (hypertriglyceridemia and low HDL cholesterol) in those with NASH (*P*<0.001).

Lomonaco R, et al. Diabetes Care. 2016;39:632-638

Genetic Variants Associated With NAFLD and Progression to NASH

	Variant	Function	Variant Effect	Phenotype
PNPLA3	rs738409	Lipid droplet remodeling	Impaired mobilization of Fas from lipid droplets	[↑] NAFLD, NASH, fibrosis, and HCC
TM6SF2	rs585542926	VLDL secretion	Decreased VLDL secretion, hepatic triglyceride accumulation	↑NAFLD, NASH, and fibrosis
GCKR	rs1260326	Regulation of de novo lipogenesis	Increased de novo lipogenesis	[↑] NAFLD, NASH, and fibrosis
MBOAT7	rs641738	Remodeling of phosphatidylinositol	Increased hepatic inflammation	[↑] NAFLD, NASH, fibrosis, and HCC
HSD17B13	rs72613567	Unknown, localizes to hepatocyte lipid droplets	Decreased HSD17B13 and PNPLA3 production	↓NASH and fibrosis

PNPLA3: patatin-like phospholipase domain-containing protein 3.

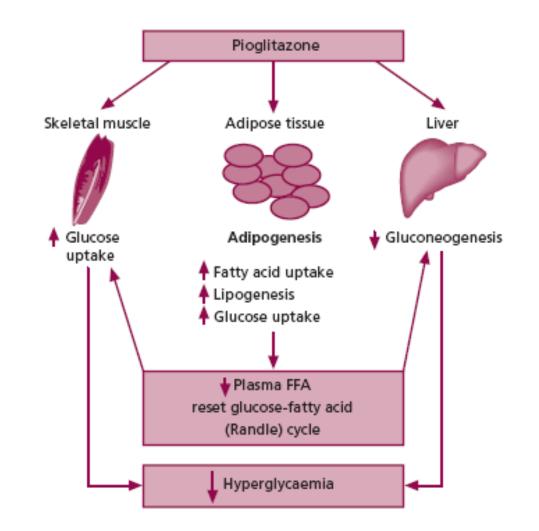

TM6SF2: transmembrane 6 superfamily member 2.

GCKR: glucokinase regulatory protein.

MBOAT7: membrane-bound O-acyltransferase domain containing 7.

Danford CJ, et al. *J Biomed Res.* 2018;32:389-400. Eslam M, et al. *J Hepatol.* 2018;68:268-279. Kovalic AJ, et al. *J Clin Exp Hepatol.* 2018;8:390-402. Abul-Husn NS, et al. *N Engl J Med.* 2018;378:1096-1106. Barbara M, et al. *Hepatobiliary Surg Nutr.* 2018;7:372-381.

Factors Associated With Fibrosis Progression

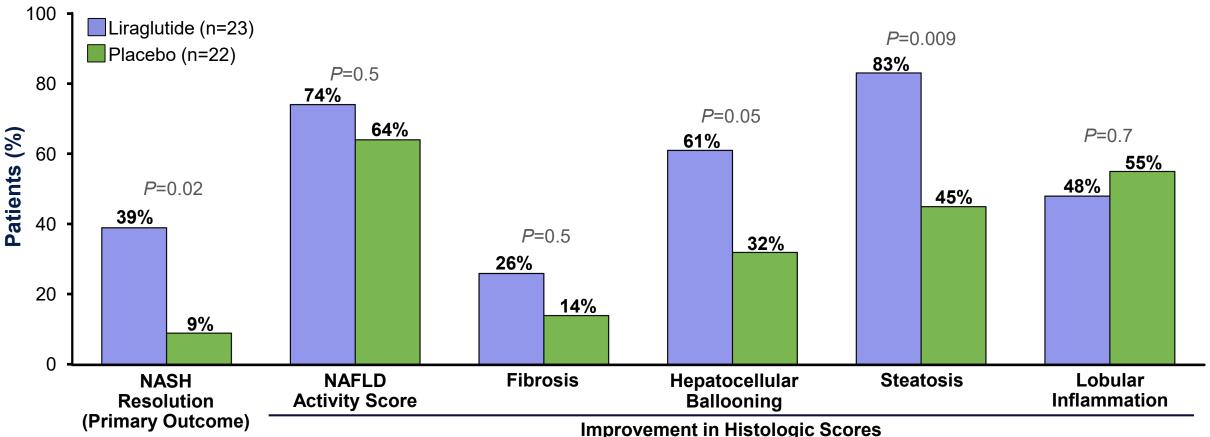

Schuppan D, et al. J Hepatol. 2018;68:238-250.

Medications Being Developed to Treat Patients With NASH Who Have Significant Fibrosis

- Major targets of medications for NASH (based on mechanism)
 - Gut-liver axis and bile acid enterohepatic circulation
 - Lipids and metabolism
 - Liver injury including hepatocyte death, inflammation, and fibrosis

Thiazolidinediones

- Improve insulin resistance through different pathways
 - Promote the differentiation of insulin-resistant large pre-adipocytes into small and insulin-sensitive adipocytes
 - Reduce inappropriate fat storage in muscle and adipocyte tissue with subsequent improvement in insulin sensitivity despite the expansion in fat mass
 - Upregulate production of adiponectin, an insulinsensitizing and anti-steatogenic adipokine that increases fatty acid beta-oxidation in liver and muscle


LEAN Study: Liraglutide in Overweight NASH Patients Without Cirrhosis

- Double-blind, placebo-controlled phase 2 study (n=52)
 - Histologic evidence of definite NASH*
 - Patients stratified by diabetes status
 - Liver biopsy within 6 months of entry
 - No Child-Pugh B/C cirrhosis
- Liraglutide or placebo for 48 weeks
- Primary endpoint (week 72, ITT)
 - Improvement in liver histology without worsening of fibrosis
 - Improvement: disappearance of hepatocellular ballooning
 - Worsening of fibrosis: any increase in Kleiner fibrosis stage

	Liraglutide (n=26)	Placebo (n=26)
Age (years)	50	52
Comorbidities Diabetes Hypertension Hyperlipidemia Cardiovascular disease	35 58 35 0	31 54 27 15
HOMA-IR	6.7	9.6
Liver histology Mean NAFLD score (0-8) Hepatocyte ballooning score (0-2) Steatosis score (0-3) Lobular inflammation score (0-3) Fibrosis stage (%) F0-F2 F3-F4	4.9 1.5 2.1 1.4 54 46	4.8 1.5 1.9 1.4 42 58

Baseline Characteristics

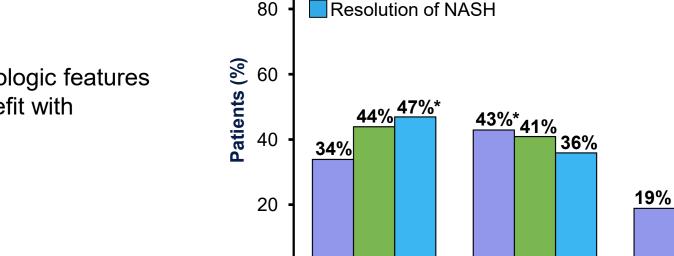
LEAN Study: Changes in Histologic Features at Week 48

Patients With Improvement

Vitamin E

2018 AASLD Practice Guidance

- Vitamin E (rrr α-tocopherol) 800 IU/day
 - May be considered for nondiabetic adults with biopsy-proven NASH (counsel patients on risks and benefits)
 - Improves liver histology, but not fibrosis
 - Long-term safety issues concerns linger (eg, impact on long-term mortality, prostate cancer)
- Vitamin E is not recommended to treat NASH in diabetic patients, NAFLD without liver biopsy, NASH cirrhosis, or cryptogenic cirrhosis
 - More data on safety and efficacy are needed

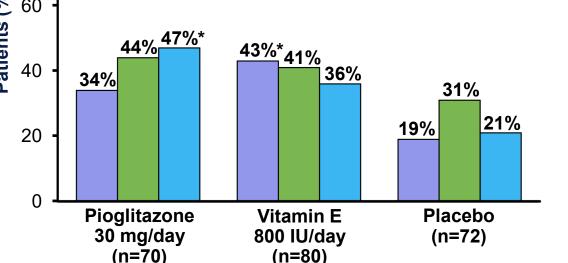

2019 Research Update

- Retrospective analysis of biopsy-confirmed NASH and advanced fibrosis (2004-2016)
 - Vitamin E (n=90) versus matched controls (n=90)
- Vitamin E users versus controls (median follow-up of 5.6 years)
 - Higher transplant-free survival (78% versus 49%; aHR 0.30 [*P*<0.01])
 - Lower hepatic decompensation rates (37% versus 62%; aHR 0.52 [*P*<0.01])
 - Benefits similar regardless of diabetes status

NASH CRN PIVENS Trial: Pioglitazone Versus Vitamin E in Biopsy-Proven NASH

- Phase 3 study in biopsy-proven NASH (n=247)
 - No diabetes or cirrhosis
- Pioglitazone, vitamin E, or placebo for 96 weeks
- Key outcomes versus placebo
 - Vitamin E significantly improved histologic features of NASH (primary outcome); no benefit with pioglitazone
 - Vitamin E and pioglitazone
 - No difference in fibrosis improvement
 - Significantly reduced ALT, AST, and hepatic steatosis (P<0.001)

PIVENS: Pioglitazone versus Vitamin E versus Placebo for the Treatment of Nondiabetic Patients

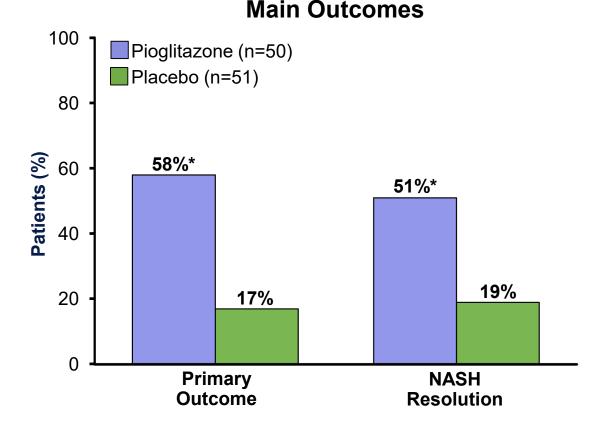


Improvement in fibrosis

100

Main Outcomes

Histologic improvement in NASH (primary outcome)


*P=0.001 versus placebo

Sanyal AJ, et al. N Engl J Med. 2010;362:1675-1685.

with Nonalcoholic Steatohepatitis.

Impact of Pioglitazone in Biopsy-Proven NASH in Patients With Prediabetes or Diabetes

- Double-blind, placebo-controlled, single-center study in biopsy-proven NASH (n=101)
 - Prediabetes or type 2 diabetes mellitus
- Pioglitazone 45 mg/day or placebo for 18 months, then open-label pioglitazone for another 18 months
- Primary outcome at 18 months
 - Reduction of at least 2 points in 2 histologic categories of NASH without worsening of fibrosis
- Key outcomes versus placebo
 - Pioglitazone significantly improved histologic features of NASH (primary outcome) and greater percentage of patients achieving NASH resolution versus placebo
 - Improvement was maintained during open-label extension

*P=0.001 versus placebo

Investigational Agents for NASH

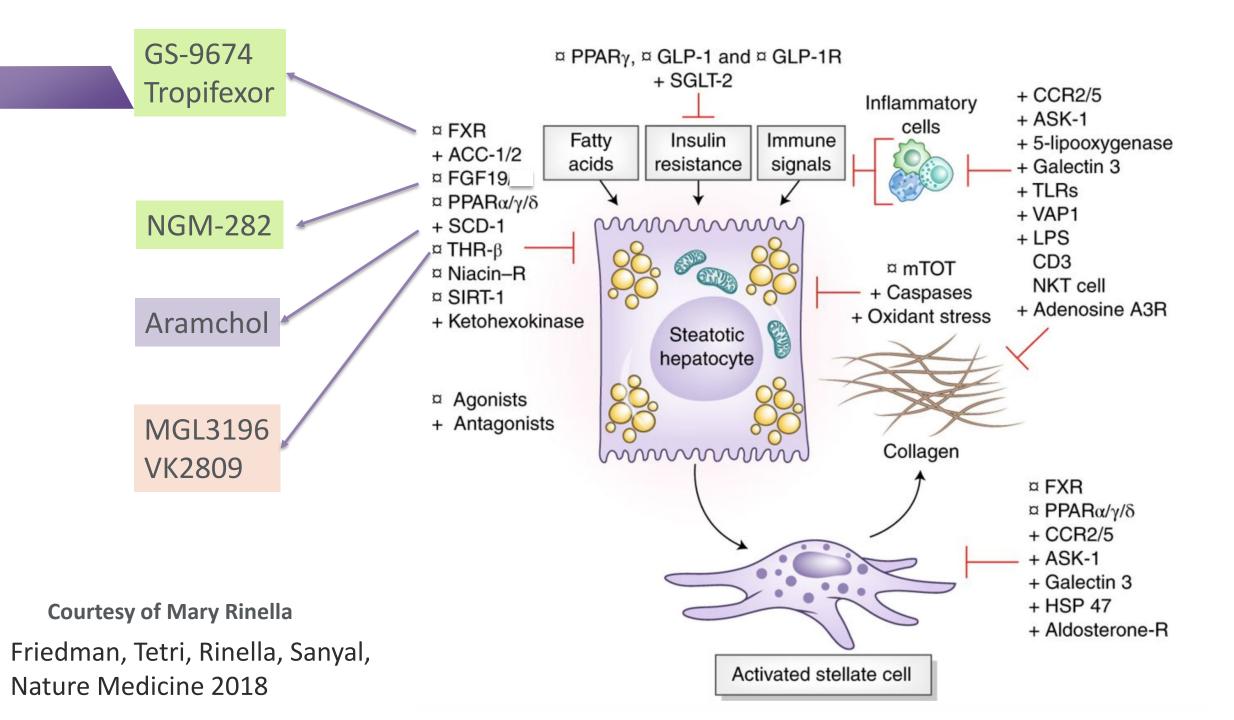
Metabolic Homeostasis

- Insulin sensitizer
- Farnesoid X receptor (FXR) agonist
- Peroxisome proliferator-activated receptor (PPAR) agonist
- Fibroblast growth factor (FGF) analogue
- Glucagon-like peptide-1 analogue
- Acetyl-CoA carboxylase (ACC) inhibitor
- Stearoyl coenzyme A desaturase 1 (SCD) inhibitor
- Growth hormone-releasing hormone
- Thyroid hormone receptor beta (THR-β) activation
- Apical sodium dependent bile acid transporter inhibitor

Oxidative Stress

- Antioxidant: Vitamin E
- Apoptosis signal-regulating kinase 1 (ASK1) inhibitor
- Vascular adhesion protein 1 (VAP-1 inhibitor)
- Phosphodiesterase (PDE5) inhibitor

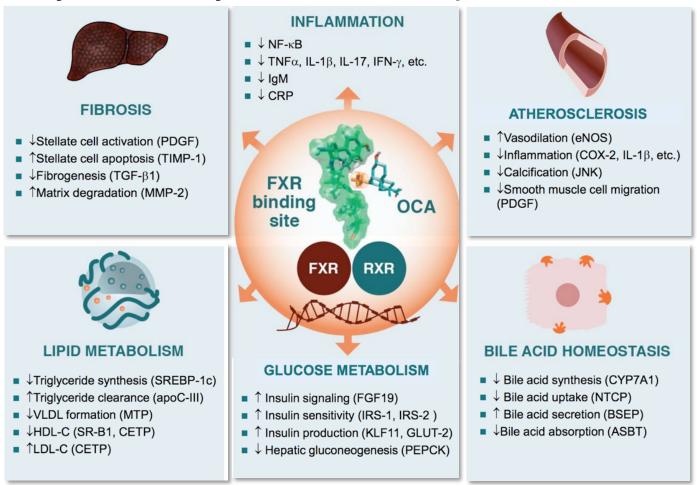
Inflammation


• C-C chemokine receptor (CCR) antagonist

Apoptosis

Caspase inhibitor

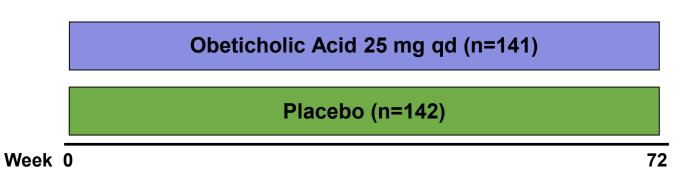
Fibrosis


• Galectin-3 protein inhibitor

Agents in Registrational Trials

- Currently in phase 3 trials
 - Obeticholic acid
 - Elafibranor
 - Selonsertib
 - Cenicriviroc
- AASLD Practice Guidance
 - Until further safety and efficacy data become available in patients with NASH, obeticholic acid should not be used off-label to treat NASH

FXR Agonist:Obeticholic Acid


Key FXR Pathways Described in Multiple Animal Models

Sumida Y, et al. *J Gastroenterol.* 2018;53:362-376. Gawrieh S, et al. *Clin Liver Dis.* 2018;22:189-199.

FLINT Study: Obeticholic Acid in NASH Patients Without Cirrhosis

```
Phase 2b (n=141)
(US)
```

Placebo-controlled Histologic evidence of definitive or borderline NASH (liver biopsy within 90 days of entry) NAFLD activity score ≥4 (individual scores each ≥1) No cirrhosis

FLINT: Farnesoid X receptor ligand obeticholic acid in NASH Treatment. Patients stratified by diabetes status. Primary endpoint (week 72, ITT): Improvement in liver histology without worsening of fibrosis. Improvement: decrease in NAFLD score ≥2 points. Worsening of fibrosis: any increase in fibrosis stage. Neuschwander-Tetri BA, et al. *Lancet.* 2015;385:956-965.

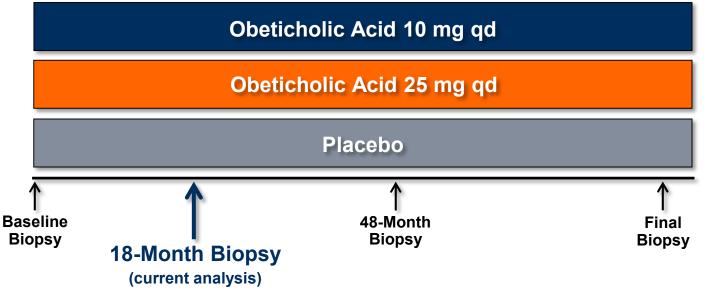
FLINT Study: Changes in Histologic Features at Week 72

80 Obeticholic acid (n=110)* Placebo (n=109)* P=0.001 61% P=0.006 60 P=0.03 53% P=0.0002 Patients (%) 46% 45% P=0.004 38% 40 35% 35% 31% P=0.08 22% 21% 19% 20 13% 0 **Overall Definite NASH** Fibrosis **Steatosis** Lobular Hepatocellular Inflammation (Primary Resolution Ballooning Outcome) Improvement in Histologic Scores

Patients With Improvement

*Number of patients for changes in histologic features: obeticholic acid (n=102), placebo (n=98).

Neuschwander-Tetri BA, et al. Lancet. 2015;385:956-965.


REGENERATE Study: Obeticholic Acid in NASH Patients Without Cirrhosis

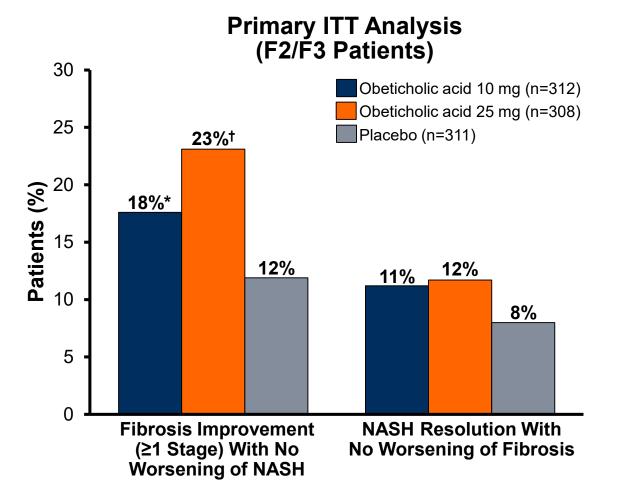
FXR agonist

Phase 3 (n=2480)

Placebo-controlled Biopsy confirmed NASH (≤6 months to study entry) Fibrosis stage 2 or 3 (NASH CRN) NAFLD activity score ≥4 Planned interim analyses: Month 18 and 28

REGENERATE: RandomizEd Global Phase 3 Study to Evaluate the Impact on NASH with FibRosis of Obeticholic Acid TreatmEnt.

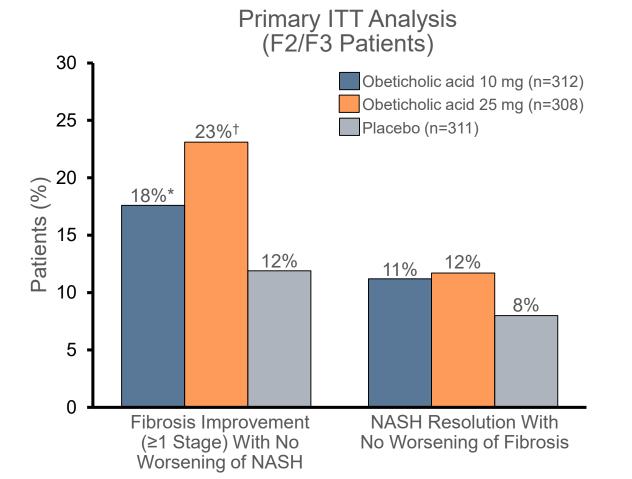
Co-primary liver histology endpoints at 18 months:

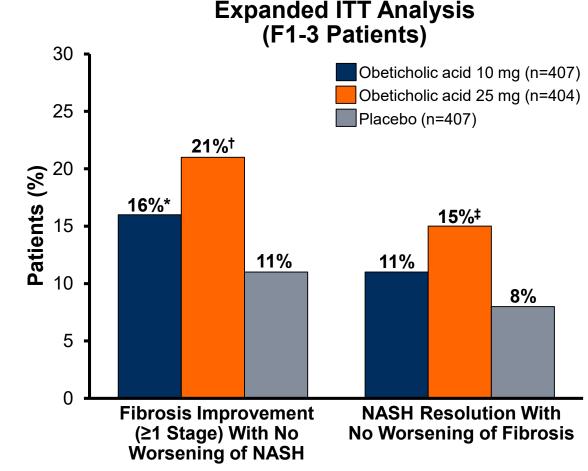

Improvement in fibrosis by \geq 1 stage with no worsening of NASH.

Resolution of NASH with no worsening in fibrosis stage.

Additional outcomes (time to first occurrence of any of the following adjudicated events): Histological progression to cirrhosis; uncontrolled ascites; hospitalization for: variceal bleed, hepatic encephalopathy or spontaneous bacterial peritonitis; HCC; liver transplant or eligibility for liver transplant; and death.

Sanyal AJ, et al. *Hepatology.* 2019;70(suppl):23A-24A. Abstract 34.


REGENERATE Study: 18-Month Interim Efficacy Analysis



*P=0.04 and †P=0.0002 versus placebo.

Worsening of NASH: no worsening of hepatocellular ballooning, lobular inflammation, and steatosis. NASH resolution: overall histopathologic interpretation of (i) no fatty liver disease or (ii) fatty liver disease (simple or isolated steatosis) without steatohepatitis AND a NAFLD activity score of 0 for ballooning and 0-1 for inflammation.

REGENERATE Study: 18-Month Interim Efficacy Analysis

**P*=0.03, †*P*<0.0001, and ‡*P*=0.001 versus placebo.

**P*=0.04 and †*P*=0.0002 versus placebo.

Worsening of NASH: no worsening of hepatocellular ballooning, lobular inflammation, and steatosis. NASH resolution: overall histopathologic interpretation of (i) no fatty liver disease or (ii) fatty liver disease (simple or isolated steatosis) without steatohepatitis AND a NAFLD activity score of 0 for ballooning and 0-1 for inflammation.

REGENERATE: Select AEs in Safety Population

Events, n (%)	Obeticholic Acid 10 mg (n = 653)	Obeticholic Acid 25 mg (n = 658)	Placebo (n = 657)
≥ 1 TEAE	579 (89)	601 (91)	548 (83)
 Leading to d/c 	39 (6)	83 (13)	41 (6)
Serious AEs	72 (11)	93 (14)	75 (11)
AEs in ≥ 5% in either OCA group			
 Pruritis 	183 (28)	336 (51)	123 (19)
 Nausea 	72 (11)	83 (13)	77 (12)
 Abdominal pain 	66 (10)	67 (10)	62 (9)
 Diarrhea 	44 (7)	49 (7)	79 (12)
 Vomiting 	34 (5)	44 (7)	33 (5)
 Urinary tract infection 	54 (8)	62 (9)	49 (7)
 Upper respiratory tract infection 	47 (7)	54 (8)	44 (7)
 Elevated LDL 	109 (17)	115 (17)	47 (7)
 Arthralgia/Back pain 	50 (8)/56 (9)	50 (8)/40 (6)	55 (8)/50 (8)
 Fatigue 	78 (12)	71 (11)	88 (13)
 Headache/Dizziness 	42 (6)/32 (5)	34 (5)/25 (4)	51 (8)/28 (4)

Slide credit: <u>clinicaloptions.com</u>

PPARα/δ Agonist:Elafibranor

• PPAR α/δ regulate lipid metabolism in liver and glucose homeostasis

PPARα Activation

- Control of lipid influx
 - Improves fatty acid oxidation
 - Lowers triglyceride level
 - Raises HDL-C levels
- Induce inflammatory genes and increase necro-inflammatory activity

PPARo Activation

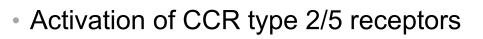
- Improves glucose homeostasis
- Inhibits hepatic lipogenesis
- Anti-inflammatory activity in macrophages and Kupffer cells

• Activation of both PPAR α/δ leads to improvement of different pathways to regulate liver metabolism involved in NASH pathogenesis

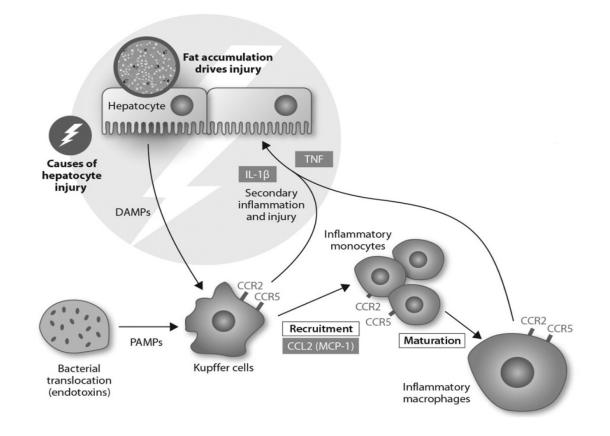
GOLDEN-505 (Elafibranor in NASH Patients Without Cirrhosis): Response in More Severe NASH (NAS ≥4 at Baseline)

All Patients 35 Elafibranor 80 mg Elafibranor 120 mg 30 Placebo 25 P=0.009* P=0.01* Patients (%) 20% 20 19% P=0.001* 15% 15 13% 13% 11% 10% 10 9% 7% 5 0 F1-F3 Fibrosis F2/F3 Fibrosis **Overall** (n=67/71/66) (n=39/38/32) (n=83/75/76) Baseline NAS ≥4

35 Elafibranor 80 mg Elafibranor 120 mg 30 Placebo $P=0.03^{*}$ 25 $P=0.02^*$ 22% 21% Patients (%) 20 P=0.002* 17% 15% 15% 15 13% 12% 11% 10 9% 5 0 F2/F3 Fibrosis F1-F3 Fibrosis Overall (n=72/67/63) (n=58/63/55) (n=33/34/32) Baseline NAS ≥4

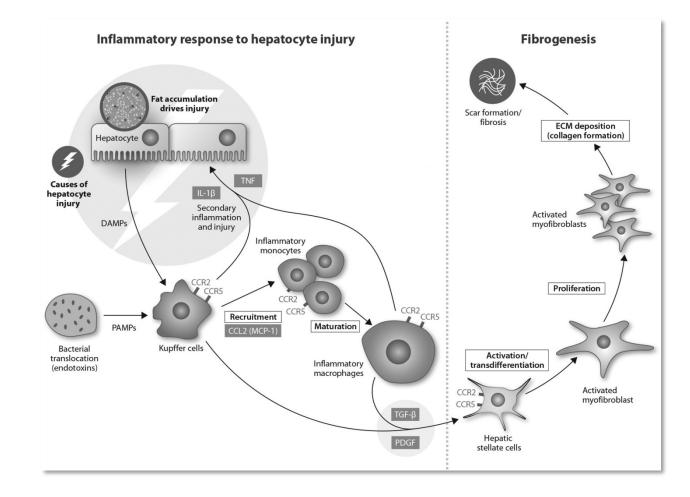

End of Trial Liver Biopsy Patients

*Elafibranor 120 mg versus placebo. Protocol-defined response results.


Ratziu V, et al. Gastroenterology. 2016;150:1147-1159.

CCR Type 2/5 Antagonist: Cenicriviroc

Inflammatory response to hepatocyte injury

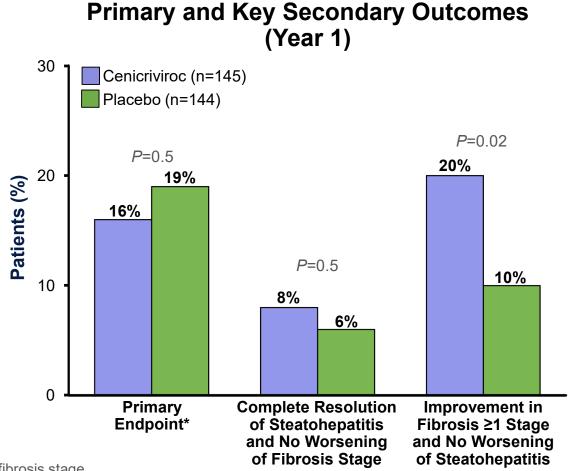


- Promotes recruitment and migration of monocytes to the liver
 - Maturate into pro-inflammatory macrophages

CCR Type 2/5 Antagonist:Cenicriviroc

- Activation of CCR type 2/5 receptors
 - Promotes recruitment and migration of monocytes to the liver
 - Maturate into pro-inflammatory macrophages
- Leads to activation of
 - Kupffer cells
 - Hepatic stellate cells
 - Collagen production
 - Fibrogenesis

CENTAUR Study (Year-1 Primary Analysis): Primary and Key Secondary Endpoint Results


- Primary endpoint
 - No significant difference between cenicriviroc and placebo (16% versus 19%)
- Key secondary endpoints
 - Complete resolution of steatohepatitis and no worsening of fibrosis stage
 - No significant difference between cenicriviroc and placebo (8% versus 6%)
 - ≥1 stage improvement in fibrosis (NASH-CRN) and no worsening of steatohepatitis
 - Achieved by significantly more cenicriviroc patients versus placebo (20% versus 10%; *P*=0.02)

*Primary endpoint:

≥2 point NAS improvement.

≥1-point reduction in either lobular inflammation or hepatocellular ballooning and no worsening of fibrosis stage.

Ratziu V, et al. *J Hepatol.* 2018;68(suppl S1):S1-S2. Abstract GS-002. Friedman SL, et al. *Hepatology*. 2018;67:1754-1767.

ATLAS Study: Cilofexor ± Firsocostat ± Selonsertib in Patients With NASH

FXR agonist + ACC inhibitor + ASK1 inhibitor

Phase 2b (n=395 planned)

Double-blind Biopsy-proven NASH Fibrosis stage 3 or 4 (NASH CRN) Non-invasive tests for those without biopsy FibroScan Enhanced liver fibrosis (ELF) score

Combination Arms

Cilofexor + Firsocostat (30/20 mg qd)

Cilofexor + Selonsertib (30/18 mg qd)

Firsocostat + Selonsertib (20/18 mg qd)

Monotherapy Arms

Cilofexor (30 mg qd)

Firsocostat (20 mg qd)

Selonsertib (18 mg qd)

Placebo

24

48

Patients previously never had a liver biopsy, liver stiffness by FibroScan and enhanced liver fibrosis (ELF) test score.

Week 0

Primary endpoints:

Safety and tolerability.

Fibrosis improvement in \geq 1 stage without NASH worsening (week 48).


FLIGHT-FXR (Part C): Tropifexor in Patients With Fibrotic NASH

FXR agonist

Phase 2

Double-blind, placebo-controlled Hepatic fat fraction ≥10% Biopsy confirmed NASH (≤6 months to study entry) Fibrosis stage 2 or 3 (NASH CRN) NAFLD activity score ≥4

Primary endpoints (week 12): Change in ALT. Hepatic fat fraction (MRI-PDDF). Additional outcomes: Change in body weight (week 12). Dose-response relationship: C4, GGT (week 12). Proportion of patients with ≥1 point improvement in fibrosis without worsening of NASH (week 48). Proportion of patients with resolution of NASH without worsening of fibrosis (week 48).

Lucas KJ, et al. *Hepatology*. 2019;70(suppl 1). Abstract L04.

FLIGHT-FXR (Part C): Interim Results With Tropifexor in Patients With Fibrotic NASH

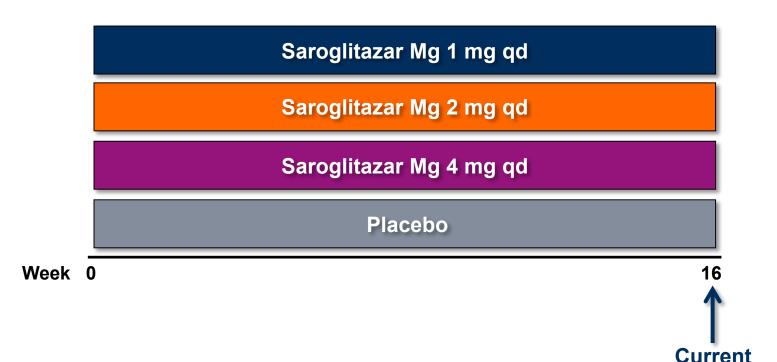
- At 12 weeks, tropifexor treatment versus placebo resulted greater decreases in
 - ALT and GGT
 - Hepatic fat fraction and proportion of patients achieving ≥30% reduction in hepatic fat fraction
 - Body weight
- Safety of tropifexor at week 12
 - Overall comparable safety profile with placebo
 - Discontinuations due to adverse events
 - Highest with 200 µg (10%) compared with 140 µg (4%) and placebo (2%)
 - Tropifexor 200 µg was associated with pruritus (which rarely led to discontinuation)
 - No evidence of hepatoxicity

Interim Results (week 12)

	Tropifexor 140 µg qd (n=50)	Tropifexor 200 µg qd (n=51)	Placebo (n=51)
Change in ALT (U/L)	-20	-24*	-9
Change in GGT (U/L)	-39*	-41*	-3
Hepatic fat fraction Relative change (%) ≥30% reduction (%)	-17 32	-34† 64	-10 20
Weight loss (kg)	-3*	-3*	-1

*P<0.05 and †P<0.001 versus placebo.

PPAR-Alpha/Gamma Agonist


- Targets lipogenesis (eg, saroglitazar)
- PPAR-alpha
 - Target for fibrate drugs and when activated can decrease serum triglyceride levels
- PPAR-gamma
 - Target for thiazolidinediones with known effects on improving insulin sensitivity

EVIDENCES IV Study: Saroglitazar Mg in NAFLD/NASH Without Cirrhosis

PPAR-alpha/gamma agonist

Phase 2 (n=72)

Double-blind NAFLD (imaging) or NASH (biopsy) ALT ≥50 U/L BMI ≥25 kg/m² No vitamin E doses >100 IU/day (3 months prior) No cirrhosis

Gawrieh S, et al. Hepatology. 2019;70(suppl 1). Abstract L10.

Analysis

EVIDENCES IV Study: Outcomes With Saroglitazar Mg in NAFLD/NASH Without Cirrhosis

- Outcomes that were significantly improved with saroglitazar at week 16
 - ALT levels
 - Hepatic fat content
 - Insulin resistance
 - Dyslipidemia
- Safety at week 16 with saroglitazar
 - Overall, well tolerated
 - No serious adverse events related to drug
 - Few discontinuations due to adverse events (n=3, 1 probably related [mild rash])

Outcomes at week to								
	Saroglitazar Mg (mg qd)							
	1 (n=26)	2 (n=23)	4 (n=27)	Placebo (n=28)				
Change in ALT (U/L)	-27*	-33†	-44 [†]	4				
Hepatic fat fraction Relative change (%) ≥30% reduction (%)	0.5 11	-0.4 5	-4‡ 40‡	-0.3 8				
Weight change (%)	0.3	0.5	1.0	0.3				

Outcomes at Week 16

**P*=0.0002, †*P*<0.0001, ‡*P*<0.01 versus placebo.

Outcomes With Cotadutide in Overweight and Obese Subjects With Type 2 Diabetes

- Maximum reduction in HbA1c was reached by week 14 in all groups except placebo
 - Reductions maintained through week 26
- Significant reductions in body weight for all doses of cotadutide
- Greater reductions on ALT with cotadutide 200 and 300 µg versus liraglutide and placebo
- Improvements in NAFLD fibrosis score and FIB-4 with cotadutide versus placebo
- Safety with cotadutide at week 26
 - Discontinuations due to adverse events was higher (16%) versus liraglutide (2%) and placebo (4%)
 - Most common adverse events: nausea (35%), vomiting (17%), and diarrhea (14%)

Outcomes at Week 26

Cotadutide (µg qd)						
	100 (n=100)	200 (n=256)	300 (n=256)	Liraglutide (n=110)	Placebo (n=112)	
Weight change (%)	-3.4*	-4.2†	-5.4†‡	- 4.2 [†]	-1.2	
LS mean change (%) ALT AST	-13 -5	-18*‡ _9†	-19*‡ -10*‡	-10 +0.3	-5 +0.2	
LS mean change NAFLD fibrosis score FIB-4	-0.15* -0.07*	-0.12* -0.06*	-0.11* -0.08*	-0.07 +0.01	+0.07 +0.03	

*P<0.05 and †P<0.001 versus placebo.

*P<*0.05 versus liraglutide.

Summary

- NASH is a complex trait disease
- Genetic Factors
- Environmental Factors
- Obesity, metabolic syndrome
- Type 2 Diabetes
- Interaction between visceral adipose tissue and liver
- Weight loss critical
- Insulin Resistance universal